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1. Introduction 

The US Army currently faces increasingly urgent demands to improve the 
performance of materials in its fielded weapons and armors. Advances in the field 
of machine learning (ML) and in high-performance computing allow for entirely 
new approaches to material discovery, data analytics, process optimization, and 
system design.1–3 ML leverages the explosion of data available from  
high-resolution experiments and modern, high-throughput simulations and is being 
applied to sparse, scattered, historical datasets. Through integration of ML 
techniques in the R&D workflow, the Army could transition solutions to the Soldier 
more rapidly and at lower expense, and those solutions may be more effective. 

The growing impact of ML on the US Department of Defense (DOD) was also 
recently recognized by Congress in the John S McCain National Defense 
Authorization Act for Fiscal Year 2019 (Section 238 on Joint Artificial Intelligence 
Research, Development and Transition Activities)4 and by Gen John M Murray 
who said “that’s exactly the type of people I need” at the 2018 Association of the 
US Army Annual Meeting5 in reference to a Soldier with a PhD in data science. 

One potential impact area is molecular materials. For example, the high-explosive 
hexanitrohexaazaisowurtzitane (CL-20) has great performance, yet it is still not 
widely fielded despite its discovery 30 years ago, in part because it cannot be 
produced in a cost-effective manner. Efforts at finding an equally effective, 
practical alternative to CL-20 have not yet been successful. The pharmaceutical 
industry, faced with similar challenges in discovery and production, embraced ML 
to accelerate their product pipelines.6 Solar cell materials have been similarly 
discovered,7 and this ML workflow may be applied to DOD materials. 

ML for materials research is not limited to organics or pure materials. It has also 
been applied to inorganic materials,8 including the study of microstructure9 and 
brittle fracture,10 which is a key issue faced by the Army for armor discovery and 
design. Development and fielding of next-generation propellants may strongly 
benefit from use of data-driven modeling in design of experiments for formulations 
where physics-based models are unavailable. ML can leverage “Big Data” sourced 
from experiments or high-fidelity simulations to aid analysis and discover entirely 
new materials or system designs through high-throughput virtual screening or 
architectures such as generative adversarial networks.11,12 ML may reduce 
computational time to solution through on-the-fly learning of fast-running  
models.13 This report will answer some common questions addressed to 
practitioners in the field, and end with self-instruction guides to build skills and 
perform work using these techniques. 
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1.1 What Do These Terms Mean? 

Over the past several years, there has been rapid growth of work in the chemistry 
and materials literature applying “machine learning” techniques for the prediction 
of material properties, development of new simulation techniques, or 
complementing experiment in discovery of new materials or improved processes. 
This general type of work is also sometimes referred to as using “data science”, 
“artificial intelligence” (AI), or “data mining” approaches. The following is an 
academic definition of ML, from “The Discipline of Machine Learning”14 by 
Professor Tom Mitchell at Carnegie Mellon University’s School of Computer 
Science:  

To be more precise, we say that a machine learns, with respect to a particular task 
T, performance metric P, and type of experience E, if the system reliably improves 
its performance P at task T, following experience E. Depending on how we specify 
T, P, and E, the learning task might also be called by names such as data mining, 
autonomous discovery, database updating, programming by example, etc.  

Common usage of the term “machine learning” does not always follow that 
academic definition. Descriptively we may claim, based on how people use the 
terms in papers and on the Web (actually influential in this area), that data science 
produces insights, ML produces predictions, and AI produces actions (see 
http://varianceexplained.org/r/ds-ml-ai/ for an expanded discussion). Predictions 
may be of continuous-valued properties, such as the melting point of a material, in 
which case it is referred to as a regression model. Predictions may also select the 
most likely class among a number of discrete options, such as whether a 
pharmaceutical molecule is inactive, moderately active, or active in regard to 
inhibiting a particular virus. Problems regarding choice of class are referred to as 
classification problems. When some ground truth is known and used for training of 
a predictive model, it is referred to as “supervised” learning.  

Actions produced by an AI model are generally a sequence of choices in response 
to an environment that changes over time due to external factors. The training 
process is often referred to as “reinforcement” learning. For example, the work on 
AlphaGo and later, AlphaGo Zero,15 trained a neural network model able to play 
the game of Go without attempting to exhaustively enumerate possible future 
positions or rely on a look-up table of past actions by human grandmasters. 
Enumeration and look-up tables were common (and successful) strategies for early 
computer chess programs but less successful for the more complex game of Go.  

In the chemistry literature, the choice to describe work as AI or ML is often due to 
the objective of the work or the use of certain classes of algorithms. For example, 
work using neural network algorithms may be referred to as AI despite their 

http://varianceexplained.org/r/ds-ml-ai/
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application to a regression or classification problem that could also be addressed 
through use of a support vector machine (another algorithm capable of discovering 
nonlinear relationships in data).16,17 Unfortunately, this shows that usage of the 
terms does depend on the field in which they are being used. Leading works in the 
chemistry literature demonstrate a broad interpretation of machine learning, often 
tied to creating a predictive model.18–26 

ML or AI model construction in this context is “data-driven”, meaning that the 
models typically do not assume any particular relationship between input variables 
and the output.21 This is opposed to physics-driven or empirically motivated 
parameterized models. For example, the empirical Kamlet–Jacobs relations for 
prediction of detonation properties include that the scaling of an explosive’s 
detonation pressure increases with the square of its density. That may not be 
explicitly included in a neural network model; instead, the model could discover 
the dependence of detonation pressure on density during its training. A potential 
advantage of the data-driven approach is the ability to have improved predictive 
accuracy, perhaps at the cost of some interpretability (the ability to explain a model 
or result in terms understandable to a human). As stated by Shmueli,27 “Explanatory 
power and predictive accuracy are different qualities; a model will possess some 
level of each”. Another perspective on model construction philosophy is provided 
by Breiman in his landmark article “Statistical Modeling: The Two Cultures”.28 
One of his comments is that by focusing on easily interpreted stochastic models 
with assumed forms (instead of embracing techniques such as random forests or 
neural nets), “statisticians have ruled themselves out of some of the most interesting 
and challenging statistical problems that have arisen out of the rapidly increasing 
ability of computers to store and manipulate data”. Both Shmueli and Breiman are 
from the statistics community; techniques underpinning much of today’s AI/ML 
work were developed by the statistics or computer science communities decades 
ago. The recent success and popularity of these techniques is due largely to four 
factors: 1) an increase in cheap and abundant computing power, 2) an increase in 
large, carefully curated datasets, 3) breakthroughs in algorithm development, and 
4) maturation of fully automated workflows for processing, model development, 
and analysis of data. 

Finally, we note that data-driven models are only as good as their input data; 
“garbage in, garbage out”. A large percentage of the time for a new ML research 
project may be spent in curation of a robust dataset. Some of the most highly cited 
works in ML research, such as the MNIST database of handwritten digits, are just 
painstakingly curated datasets. 
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1.2 How Does a Basic Neural Network Operate? 

In Fig. 1, we show how a small feed-forward neural network operates. We assume 
that the model has already been trained: its weights W and biases b have been 
optimized to generate a useful model for the problem at hand. Input is a vector x of 
rank i (where i is the number of input nodes). Each vector element is simply a 
number. As input is passed to the hidden layer, it is multiplied by linear weights W 
for each edge. At each node in the hidden layer, incoming edge values are summed, 
a bias value is added, and then nonlinear function h(x) is applied to the resulting 
value. The choices of nonlinear function (such as a hyperbolic tangent, or “tanh”) 
and number of hidden nodes (in Fig. 1, three green circles) is made during the model 
construction process and may be considered a hyperparameter to be optimized. The 
nonlinear functionality in the hidden nodes is what allows neural networks to be 
more useful than a simple linear regression model. 

 

Fig. 1 Information flow of a small feed-forward neural network (also known as multilayer 
perceptron), drawn with nodes (circles) and edges (arrows). Input nodes are drawn in yellow, 
hidden nodes in green, and the output node in orange. Math operations are shown for a subset 
of the network.  
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Considering all hidden nodes, the intermediate values may be described as a new 
vector x of rank j (where j is the number of nodes in the hidden layer). These values 
are passed along a set of edges to the output layer and weighted in a similar fashion 
as before. At the output node, incoming edges are summed and a bias is added, and 
then a function g(x) is applied to the resulting value. This function is often different 
from the activation function used for hidden nodes, and may be linear. For 
classification problems, where the network is trying to select among limited 
options, g(x) is often a sigmoid or softmax function, and there may be many nodes 
in the output layer (one per class determination). For typical regression problems, 
where the network is trying to predict a continuous number, g(x) is a linear 
activation, and there is one node in the output layer. For large neural networks, the 
number of weights to be trained increases very quickly, and training may be a 
challenging, time-consuming process. A subject matter expert applying neural 
networks to their field may advance the state of the art by determining the best way 
to construct an input vector x (sometimes called a “featurization” or “descriptor”) 
and the best type of neural network (or “topology”) for their problem. For the 
purposes of this report, we limit our explanation of ML methods to this simple 
neural network. Neural networks have a wide variety of applications that are 
sometimes viewed as magical black boxes; we wanted to show some of the not-so-
magical underpinning math. Neural networks are not the only algorithms to be used 
for ML of materials. Other common methods include, but are not limited to random 
forests,29 Gaussian process regression,30 and support vector machines.31 

1.3 Is Machine Learning Just Interpolation and Only Useful 
When Interpolating Between Training Set Data Points? 

The question has different answers depending on the problem being studied and the 
algorithm being used. Multilayer perceptrons may effectively be interpolating, but 
their optimal input representation may be very different from that used in linear 
regression. Neural networks introduce parsimonious, nonlinear transforms of input 
element combinations, so that the final hidden layer that is being interpolated over 
will be quite different from the input space. Given sufficient data, neural networks 
should have a different (hopefully lower) error when faced with an out-of-set 
example as compared with a linear regression model for a problem with a nontrivial 
underlying mechanism.21,32 Kernel-based methods allow for analysis in a higher-
dimensional space than the native representation of the data, which makes problems 
linearly separable that were previously inseparable.33 In the case of regression 
problems, kernel methods conveniently allow for modeling of periodic time-
varying effects and for nonlinear weighting of data points based upon a similarity 
metric (or data “distance”). This allows them to very effectively interpolate. 
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Random forests may discover key rules in classification problems that allow 
reliable extrapolation to unseen data if the pertinent underlying rule is represented 
in the training set.29 Convolutional neural networks operating on 2-D/3-D pixel or 
voxel data may be interpolating by first “learning” localized, intermediate 
representations and multidimensional interactions that would be practically 
impossible to model by interpolating among training images.34 Unsupervised 
learning does not leverage any “ground truth” dataset; therefore, is not interpolating 
among a reference set. Instead, it is usually used to discover relationships present 
but not described within a dataset. The most-common examples of unsupervised 
learning are clustering and dimensionality reduction techniques, and unsupervised 
methods are often used as part of a larger workflow for predictive modeling. 
Reinforcement learning (e.g., AlphaGo) determines policy (or control strategy) for 
an agent (or independent actor in an unknown dynamical environment), and this 
process requires more than value estimation for a state (so it is not just 
interpolation). Reinforcement models are often associated with research toward 
autonomously acting agents such as artificially intelligent robots or game-playing 
AI.  These models are often referred to as AI instead of ML, and have been applied 
to synthetic chemistry problems.35 

1.4 How Is It Done? 

Execution of ML research for chemistry and materials commonly leverages the 
“scientific Python” stack, including numpy, pandas, scikit-learn, and additional 
neural network packages such as TensorFlow and Keras. We endorse use of that 
stack, although languages such as R, C++, and Julia are also used in this field.  The 
following guides are concise instructions for self-education to begin performing 
work using those tools for ML for materials, in particular, molecular materials. It 
is assumed that the motivated individual has some (perhaps limited) experience in 
programming and needs to improve their Python skills. The guides heavily leverage 
disparate public resources such as tutorials on the Web and academic publications, 
but prescribe a course of study that will allow someone to begin research in this 
field within a minimal amount of time: 1–4 weeks depending on level of 
experience, not including complete reading of recommended books. Further, the 
final exercises expose the reader to important concepts typically taught in an 
undergraduate computer science course on algorithms. If you work with DOD and 
are unable to retrieve any of the resources mentioned in the guides, please contact 
the author. After completion of these guides, including reading recommended 
articles and relevant parts of recommended books, a researcher should generally be 
able to understand and conceive how to reproduce publications on ML in the 
chemistry and materials science literature. 
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2. Bootstrap Yourself into Machine Learning for Materials 

1. Install Anaconda (Python 3 version) on your computer of choice. It is useful to install this on a 
laptop/desktop to use features that couple to your Web browser. Anaconda is free and available at 
https://www.anaconda.com/download/. Review its documentation and launch Spyder. Anaconda is 
available as a computational science environment module on DOD supercomputers. 

2. (multiday task) Familiarize yourself with the Python language, its standard library, and third-party 
modules used for science. Completing the tutorial at https://docs.python.org/3/ is essential; browsing 
the library/language references is useful. When learning Python and studying example code, you should 
execute that code in Spyder and reproduce the results. Reproducing results ensures that the example is 
correct for your version of Python (not always the case) and helps you “learn by doing”. Work the 
examples in Sections 1.1 through 2.1 at http://www.scipy-lectures.org/. Browse Python style at 
https://www.python.org/dev/peps/pep-0008 to help with writing easily understood code. 

3. Reproduce and understand every example at http://scikit-learn.org/stable/tutorial/index.html in the first 
two sections (“intro to ML” and “tutorial on statistical-learning”). Try to grasp “how” the examples 
work (data structures and application programming interfaces (APIs)). Your future research efforts will 
probably heavily leverage scikit-learn tools, so feel free to explore. 

4. Understand what pandas is and how to get started using it. See http://pandas.pydata.org/pandas-
docs/stable/10min.html and work the examples. When would you use pandas instead of just numpy? 

5. Using the conda command line tool, make a new Anaconda environment that includes the anaconda 
metapackage and install TensorFlow in it. See: https://conda.io/docs/user-guide/tasks/index.html for 
managing environments and packages, and https://anaconda.org/anaconda/tensorflow for tensorflow. 

6. Install RDKit in the same environment as tensorflow, again using the conda command line tool. See 
https://anaconda.org/rdkit/rdkit and http://www.rdkit.org/docs/GettingStartedInPython.html for details 
on installation and rdkit capabilities. Study and test the examples in the RDKit overview. 

7. Fix and reproduce this example (make an equivalent model) using its data, TensorFlow’s Keras, and 
RDKit: https://www.wildcardconsulting.dk/useful-information/molecular-neural-network-models-
with-rdkit-and-keras-in-python/. Tip: use “from tensorflow.python.keras” as the syntax to import 
functions from keras and reformat the input data file as needed. 

8. (multiday task) Execute the crash course at https://developers.google.com/machine-learning/crash-
course/prereqs-and-prework including all programming exercises. You do not need to understand all 
of the TensorFlow syntax—just the main points. Many model construction and training techniques 
covered in this course transfer to a wide variety of other problems.  Additional datasets to explore are 
available at websites such as https://www.kaggle.com or http://archive.ics.uci.edu/ml/index.php. 

9. We recommend you read some landmark articles, including “Statistical Modeling: The Two Cultures”28 

and “To Explain or to Predict?”.27 We recommend the following books: The Elements of Statistical 
Learning, 2nd edition,36 Computer Age Statistical Inference,37 and Python Data Science Handbook.38  
US Army Research Laboratory staff may contact the author for those publications, and more. 

  

https://www.anaconda.com/download/
https://docs.python.org/3/
http://www.scipy-lectures.org/
https://www.python.org/dev/peps/pep-0008
http://scikit-learn.org/stable/tutorial/index.html
http://pandas.pydata.org/pandas-docs/stable/10min.html
http://pandas.pydata.org/pandas-docs/stable/10min.html
https://conda.io/docs/user-guide/tasks/index.html
https://anaconda.org/anaconda/tensorflow
https://anaconda.org/rdkit/rdkit
http://www.rdkit.org/docs/GettingStartedInPython.html
https://www.wildcardconsulting.dk/useful-information/molecular-neural-network-models-with-rdkit-and-keras-in-python/
https://www.wildcardconsulting.dk/useful-information/molecular-neural-network-models-with-rdkit-and-keras-in-python/
https://developers.google.com/machine-learning/crash-course/prereqs-and-prework
https://developers.google.com/machine-learning/crash-course/prereqs-and-prework
https://www.kaggle.com/
http://archive.ics.uci.edu/ml/index.php
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3. Python Exercises: Validate Your Bootstrapping 

Preamble: For any of these exercises, do not just Google the solution. That defeats the point. Limit yourself 
to checking language or library documentation. Most documentation is available via executing “help()” or 
“?” or “%quickref” at the ipython console prompt in Spyder. Use Python for all exercises. 

1. Solve at least the first six problems at https://projecteuler.net/archives. The first six answers are: 
233168, 4613732, 6857, 906609, 232792560, and 25164150. 

2. http://codingbat.com/python is a site that will allow you to enter code to solve test problems directly at 
its website, and then execute your code to see whether it provides the output as requested by the test. 
Without looking at the solutions, correctly solve at least half of the problems in each section (Warmup-
1, List-1, etc.), with the exception of String-2. You can skip String-2. CodingBat was chosen because 
it does not require any sort of account creation or login to use its examples. If you enjoy this format of 
online exercise, visit: https://leetcode.com/, https://www.hackerrank.com/, https://www.codewars.com, 
or https://coderbyte.com/. Those sites are better than CodingBat, but require you to create an account. 

3. We now move on to exercises using ipython notebooks, also called Jupyter notebooks. ipython 
notebook will be installed by default if you are using Anaconda, as recommended. To start the Jupyter 
Notebook environment, do one (and only one) of the following things: 1) launch Jupyter Notebook 
from the Anaconda Navigator, 2) launch Jupyter Notebook from its Windows start menu shortcut, or 
3) execute “jupyter notebook” from an Anaconda command-line prompt. After any of those three items, 
your default browser should open up a new window/tab showing a list of directories and files. If you 
have an ipython notebook (.ipynb file extension) in one of your directories, you will be able to open it 
through this interface. More information is available at https://jupyter.org/documentation and 
https://docs.anaconda.com/anaconda/user-guide/tasks/use-jupyter-notebook-extensions.  

4. Using the “no_solution” variant of available ipython notebooks, complete at least 50 of the 100 numpy 
exercises at https://github.com/rougier/numpy-100/. If you get stuck, try viewing the “with_hint” 
notebook. Afterwards, view the full notebook to check your work and demonstrate efficient code. 

5. “Challenge” notebooks covering advanced concepts and containing unit tests are available at 
https://github.com/donnemartin/interactive-coding-challenges. As an example, complete the fizz buzz 
challenge and view its solution notebook. Complete at least 10 of the following “challenge” notebooks: 
find the digital root, generate a list of primes, merge tuple ranges, determine if a string is a permutation, 
determine if a number is a power of 2, find the highest product of three numbers, implement a linked 
list, search a sorted matrix for an item, determine an island’s perimeter, create a class supporting insert 
[…] in O(1), find a unique number of ways to represent n cents given coins, maximize stock prices 
given k transactions, maximize items placed in a knapsack, implement a binary search tree, implement 
a graph, implement breadth-first search on a graph, implement depth-first search on a graph, implement 
a stack, implement a queue, implement a priority queue, and/or find the shortest path in a weighted 
graph. If you do not understand the statement of a problem, do external reading, ask a programmer 
friend, or skip it. Some graph problems require challenges to be completed in a specific order and may 
require use of supporting .py files available in the repo. Afterward, view the solution notebooks. 

https://projecteuler.net/archives
http://codingbat.com/python
https://leetcode.com/
https://www.hackerrank.com/
https://www.codewars.com/
https://coderbyte.com/
https://jupyter.org/documentation
https://docs.anaconda.com/anaconda/user-guide/tasks/use-jupyter-notebook-extensions
https://github.com/rougier/numpy-100/
https://github.com/donnemartin/interactive-coding-challenges
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2-D  2-dimensional 

3-D  3-dimensional 

AI  artificial intelligence 

CL-20  hexanitrohexaazaisowurtzitane 

DOD  US Department of Defense 

ML  machine learning 

R&D  research and development 
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